Diffusion Tensor Image Registration with Combined Tract and Tensor Features

نویسندگان

  • Qian Wang
  • Pew-Thian Yap
  • Guorong Wu
  • Dinggang Shen
چکیده

Registration of diffusion tensor (DT) images is indispensible, especially in white-matter studies involving a significant amount of data. This task is however faced with challenging issues such as the generally low SNR of diffusion-weighted images and the relatively high complexity of tensor representation. To improve the accuracy of DT image registration, we design an attribute vector that encapsulates both tract and tensor information to serve as a voxel morphological signature for effective correspondence matching. The attribute vector captures complementary information from both the global connectivity structure given by the fiber tracts and the local anatomical architecture given by the tensor regional descriptors. We incorporate this attribute vector into a multi-scale registration framework where the moving image is warped to the space of the fixed image under the guidance of tract information at a more global level (coarse scales), followed by alignment refinement using regional tensor distribution features at a more local level (fine scales). Experimental results indicate that this framework yields marked improvement over DT image registration using volumetric information alone.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Registration and Analysis of White Matter Group Differences with a Multi-fiber Model

Diffusion magnetic resonance imaging has been used extensively to probe the white matter in vivo. Typically, the raw diffusion images are used to reconstruct a diffusion tensor image (DTI). The incapacity of DTI to represent crossing fibers leaded to the development of more sophisticated diffusion models. Among them, multi-fiber models represent each fiber bundle independently, allowing the dir...

متن کامل

Assessment of the Log-Euclidean Metric Performance in Diffusion Tensor Image Segmentation

Introduction: Appropriate definition of the distance measure between diffusion tensors has a deep impact on Diffusion Tensor Image (DTI) segmentation results. The geodesic metric is the best distance measure since it yields high-quality segmentation results. However, the important problem with the geodesic metric is a high computational cost of the algorithms based on it. The main goal of this ...

متن کامل

Diffusion Tensor Image Registration Using Tensor Geometry and Orientation Features

This paper presents a method for deformable registration of diffusion tensor (DT) images that integrates geometry and orientation features into a hierarchical matching framework. The geometric feature is derived from the structural geometry of diffusion and characterizes the shape of the tensor in terms of prolateness, oblateness, and sphericity of the tensor. Local spatial distributions of the...

متن کامل

Improved Correspondence for DTI Population Studies Via Unbiased Atlas Building

We present a method for automatically finding correspondence in Diffusion Tensor Imaging (DTI) from deformable registration to a common atlas. The registration jointly produces an average DTI atlas, which is unbiased with respect to the choice of a template image, along with diffeomorphic correspondence between each image. The registration image match metric uses a feature detector for thin fib...

متن کامل

Review of Techniques for Registration of Diffusion Tensor Imaging

Image registration is a common image processing task, and therefore, many algorithms have been proposed and described to carry it out for different image modalities. However, the application of these algorithms to diffusion tensor imaging is not straightforward due to the special features of this kind of data, where a tensor is defined at each voxel. The information provided by the diffusion te...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention

دوره 14 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2011